一、常用散热方式
提高 LED发光效率是业内研究的热点,其中从芯片角度提高外量子效率目前常用的途径有:生长分布布拉格反射层结构、制作透明衬底、衬底剥离技术、倒装芯片技 术、表面粗化技术、异形芯片技术、采用光子晶体结构等。目前,芯片即使光效达到200lm/W,外量子效率仍不高,原因在于散热管理尚未得到理想解决。
目前,由日本松下电工(Matsushita Electric Works Ltd)与美国加州大学圣塔芭芭拉分校(USCB)共同研究的计划,已开发出具有较高外部量子效率的发光二极管(LED)。
图1 USCB研究成果
根据热流定律,热传导方式的导热系数中通过材料的热流总量总是反比于材料的热阻。
增 大热传导的方法有:①增大芯片热传导系数;②增大焊料热传导系数;③减薄焊料厚度;④增大基板热传导系数。在管芯与透镜、热沉基板、金丝、热沉金属电路层 之间的对流中,管芯-热沉基板-散热器-热对流至空气、管芯-金丝-热沉金属电路层-散热器-热对流至空气、管芯-热沉金属电路层-散热器-热对流至空气 这三种方式是主要的散热途径,管芯-热沉金属电路层-散热器-热对流至空气是次要途径。
图2 封装件中热传导路径
对流传热是流体流动载热与热传导联合作用的结果,流体对壁面的热流密度因流动而增大。流动传热分为强制对流和自然对流两种。根据牛顿冷却定律:
Q=A×α×(tW-t)
其中,Q热流量;A为散热面积,α为对流系数,为壁温(℃),t为冷流体主体温度。由公式可推出,增大热对流方法有:1.增大散热面积;2.增大对流系数;3.增大温度差。
图3 两种散热方式的散热路径